
Automatic Synthesis and Fault-Tolerant Experiments on
an Evolvable Hardware Platform=1

Adrian Stoica, Didier Keymeulen, V. Duong and C. Salazar-Lazaro

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

818-354-2190
adrian.stoica@jpl.nasa.gov

= In Proceedings of the IEEE Aerospace Conference, March 18-25, 2000, Big Sky, MT, USA.
1 0-7803-5846-5/00/$10.00 © 2000 IEEE

Abstract— Outer solar system exploration and missions to
comets and planets with severe environmental conditions
require long-term survivability of space systems. This
challenge has recently been approached with new ideas,
such as using mechanisms for hardware adaptation inspired
from biology. The application of evolution-inspired
formalisms to hardware design and self-configuration lead
to the concept of evolvable hardware (EHW). EHW refers
to self-reconfiguration of electronic hardware by
evolutionary/genetic reconfiguration mechanisms. The
paper describes a fine-grained Field Programmable
Transistor Array (FPTA) architecture for reconfigurable
hardware, and its implementation on a VLSI chip. A first
experiment illustrates automatic synthesis of electronic
circuits through evolutionary design with the chip-in-the-
loop. The chip is rapidly reconfigured to evaluate candidate
circuit designs. A second, fault-tolerance experiment shows
how evolutionary algorithms can recover functionality after
being subjected to faults, by finding new circuit
configurations that circumvent the faults.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. TOWARD EVOLUTION-ORIENTED CHIPS
 3. TEST BED FOR EVOLUTIONARY EXPERIMENTS
 4. AUTOMATIC SYNTHESIS OF A NEW FUNCTION
 5. A SELF-HEALING EXPERIMENT

6. LESSONS LEARNED
7. CONCLUSION

 1. INTRODUCTION

Long-term survivability of space systems, as required, for
example, by outer solar system exploration and missions to
comets and planets with severe environmental conditions,
has recently been approached with new ideas, such as the
use of biology-inspired mechanisms for hardware
adaptation. The application of evolution-inspired
formalisms to hardware design and self-configuration lead
to the concept of evolvable hardware (EHW). In the narrow

sense EHW refers to self-reconfiguration of electronic
hardware by evolutionary/genetic reconfiguration
mechanisms. In a broader sense, EHW refers to various
forms of hardware, from sensors and antennas to complete
evolvable space systems that could adapt to changing
environments and, moreover, increase their performance
during the mission.

There are two main benefits EHW can bring to spacecraft
survivability. Firstly, EHW can help preserving existing
functions, in conditions where hardware is subject to faults,
aging, temperature drifts and radiation, etc. Secondly, new
functions can be generated (more precisely new hardware
configurations can be synthesized to provide required
functionality) when needed.

This paper reports on experiments that illustrate how
evolutionary algorithms can design analog and digital
circuits and recover functionality when lost due to faults, by
finding new circuit configurations that circumvent the
faults. The search for an electronic circuit realization of a
desired transfer characteristic can be made in software as in
extrinsic evolution, or in hardware as in intrinsic evolution.
In extrinsic evolution the final solution is downloaded to
(or becomes a blueprint for) the hardware. In intrinsic
evolution the hardware actively participates in the circuit
evolutionary process and is the support on which candidate
solutions are evaluated.

A variety of circuits have been synthesized through
evolutionary means. For example, Koza used Genetic
Programming (GP) to grow an “embryonic” circuit to one
that satisfies desired requirements [1]. This approach was
used for evolving a variety of circuits, including filters and
computational circuits. An alternative encoding technique
for analog circuit synthesis, which has the advantage of
reduced computational load was used by Lohn and
Colombano[2] for automated filter design. On-chip
evolution was demonstrated by Thompson [3] using an
Field Programmable Gate Array (FPGA) as the
programmable device, and a Genetic Algorithm (GA) as

the evolutionary mechanism. More details on current work
in evolvable hardware are found in [4-7]. Evolutions of
analog circuits reported in [1] and [2] were performed in
simulations without concern for a physical implementation.
It shows that evolution can lead to circuit designs that
compete, or even exceed in performance those of humans.
Current programmable analog devices are very limited in
capabilities and do not support the implementation of the
resulted design (but, in principle, one can test their validity
in circuits built from discrete components, or in an ASIC
(Application Specific Integrated Circuit)). More recently,
evolutionary experiments were performed on Field
Programmable Analog Arrays [18] and ASIC [11].

There is another characteristic that makes electronic
devices an attractive domain for applying evolution; the
possibility to produce electronic systems that are inherently
insensitive to faults such as silicon defects by using
evolution in hardware to design fault-tolerant or highly
reliable systems. The evolution is even able to self-repair
on-line by exploiting defective components as if they were
working parts [15-16].

This paper is organized as follows: Section 2 presents an
evolution-oriented architecture for reconfigurable hardware
based on the concept of Field Programmable Transistor
Array. Section 3 presents the experimental setup,
including details of the evolutionary design tool, the FPTA
chip and the hardware evaluation board. Section 4 presents
automatic synthesis of an electronic circuit by intrinsic
evolution (on FPTA chips). Section 5 describes a fault-
tolerant experiment in which functionality is recovered
after a fault. Section 6 presents some lessons learned from
the experiments and section 7 concludes the paper.

2. TOWARD EVOLUTION-ORIENTED CHIPS

In the context of electronic synthesis on reconfigurable
devices, the architectural configurations are encoded in
"chromosomes" that define the state of the switches
connecting elements in the reconfigurable hardware. The
main steps in evolutionary synthesis of electronic circuits
are the following. First, a population of chromosomes is
randomly generated to represent a pool of circuit
architectures. The chromosomes are converted into circuit
models (for extrinsic EHW) or control bitstrings
downloaded to programmable hardware (intrinsic EHW).
Circuit responses are compared against specifications of a
target response and individuals are ranked based on how
close they come to satisfying it. Preparation for a new
iteration loop involves generation of a new population of
individuals from the pool of the best individuals in the
previous generation. Here, some individuals are taken as
they were and some are modified by genetic operators, such
as chromosome crossover and mutation. The process is
repeated for a number of generations, resulting in
increasingly better individuals. The process is usually

ended after a given number of generations, or when the
closeness to the target response has been reached. In
practice, one or several solutions may be found among the
individuals of the last generation.

Current efforts in the evolution of hardware have been
limited to simple circuits [5]. For experiments with digital
circuits, this limitation may be caused by a lack of power of
evolutionary techniques in such search spaces. For analog
circuits the limitation appears to come from a lack of
appropriate reconfigurable analog devices to support the
search. This precludes searches directly in hardware and
requires evolving on hardware models. Such models require
evaluation with circuit simulators such as SPICE; the
simulators need to solve differential equations and, for
anything beyond simple circuits, they require too much
time for practical searches of millions of circuit solutions.
A hardware implementation offers a big advantage in
evaluation time for a circuit; the time for evaluation is
determined by the goal function. For example, considering
an A/D converter operating at a 100 kHz sampling rate the
electronic response of the A/D converter is available within
10 microseconds, compared to (an over-optimistic) 1
second on a fast computer running SPICE; this advantage
increases with the complexity of the circuits. In this case
the 105 speedup would allow evaluations of populations of
millions of individuals in seconds instead of days.

Most reconfigurable devices are digital, and while several
levels of granularity are in use, the most common ones are
configurable at the gate-level. In the analog programmable
devices the reconfigurable active elements are Operational
Amplifiers, such as in Field Programmable Analog Arrays
(FPAA) with only very coarse granularity and few
programmable components, allowing specified functionality
with good precision, having a limited range of possible
EHW experiments. The optimal choice of elementary block
type and granularity is task dependent. At least for
experimental work in evolvable hardware, it appears a good
choice to build reconfigurable hardware based on elements
of the lowest level of granularity. Virtual higher-level
building blocks can be considered by imposing
programming constraints. An example of this would entail
forcing groups of elementary cells to act as a whole (e.g.
certain parts of their configuration bitstrings with the
interconnections for the N transistors implementing a
NAND would be frozen). Ideally, the “virtual blocks” for
evolution should be automatically defined/clustered during
evolution (an equivalent of the Automatically Defined
Functions predicted and observed in software evolution).

The idea of a field programmable transistor array was
introduced first in [11]. The FPTA is a concept design for
hardware reconfigurable at transistor level. As both analog
and digital CMOS circuits ultimately rely on functions
implemented with transistors, the FPTA appears as a
versatile platform for the synthesis of both analog and

digital (and mixed-signal) circuits. Further, it is considered
a more suitable platform for synthesis of analog circuitry
than existing FPGAs or FPAAs, extending the work on
evolving simulated circuits to evolving analog circuits
directly on the chip. The FPTA module is an array of
transistors interconnected by programmable switches. The
status of the switches (ON or OFF) determines a circuit
topology and consequently a specific response.

Figure 1 Module of the Programmable Transistor Array

Thus the topology can be considered as a function of switch
states, and can be represented by a binary sequence, such as
“1011… ”, where by convention one can assign 1 to a
switch turned ON and 0 to a switch turned OFF. The FPTA
architecture allows the implementation of bigger circuits by
cascading FPTA modules with external wires.

Figure 2 Schematic of a simple circuit implemented on a
FPTA module (with leakage through the finite resistance of

OFF switches as dotted lines on the right figure).

To offer sufficient flexibility the module has all transistor
terminals connected via switches to expansion terminals
(except those connected to power and ground). Issues
related to chip expandability were treated in [11]. Figure 1
illustrates an example of a FPTA module consisting of 8
transistors and 24 programmable switches. In this example
the transistors P1-P4 are PMOS and N5-N8 are NMOS,
and the switch-based connections are in sufficient number

to allow a majority of meaningful topologies for the given
transistor arrangement, and yet less than the total number
of possible connections. Programming the switches ON and
OFF defines a circuit for which the effects of non-zero,
finite impedance of the switches can be neglected in the
first approximation. An example of a circuit drawn with
this simplification is given in Figure 2.

3. TEST BED FOR EVOLUTIONARY EXPERIMENTS

An evolutionary design tool was developed to facilitate
experiments in simulated and hardware evolution [17]. The
tool illustrated in Figure 3 can be used for synthesis and
optimization of new devices, circuits, or architectures for
reconfigurable hardware. The tool proved very useful in
testing architectures of reconfigurable HW and
demonstrating evolution on a dedicated reconfigurable
chip. In its current implementation the tool uses the public
domain Parallel Genetic Algorithm package, PGAPack, a
public domain version of SPICE 3F5 as circuit simulator
and an evolvable hardware test bed built around LabView.
An interface code links the GA with the simulator and with
the hardware where potential designs are evaluated, while a
GUI allows easy problem formulation and visualization of
results. At each generation the GA produces a new
population of binary chromosomes, which get converted
into voltages in Netlists that describe candidate circuit
designs and into configuration bits for the reconfigurable
devices. Netlists are further simulated by SPICE and
configuration bits are downloaded into the hardware device
by LabView. More details about the tool are given in
[10],[17].

Figure 3 Environment for evolutionary design.

Graphical
User Interface

PGAPACK
Parallel

Genetic Algorithm

Evolutionary Design Environment

Genes

Fitness of
individual

device/circuit
Desired
Data

Data
from

simulation

Spice
Simulator

Parametric
Model

1 of 256 processors
Caltech supercomputer

(HP Exemplar)
4 PTAs

controlled by
LabView

Configuration
Bits

Hardware
Execution

Data
from
Data

Acquisition
Board

Fitness of
individual

device/circuit

S7
P1

S4

S1

P2

V +

S12

S5

P4

S14

S15

S22

N6

N8

S24S23

N7

S20

N5
S11

S18

S17

S6
S9

S8
S2

S3
P3

S13
S10

S16

S19
S21

V -

V-

Rload

V+

Iout

Vin

V+

V-

Iout

Rload

Vin

After successful evolution on the simulated FPTA a test
chip implementing the FPTA architecture was developed.
Circuit evolutionary synthesis directly on the chip became
possible at an expected accelerated pace of over two orders
of magnitude compared to the simulation on the
supercomputer (estimated ~5 seconds compared to ~20
minutes for the experiment described). In the experimental
simulations, the size of the transistors was fixed. The
programmable switches were implemented with transistors,
acting as simple T-gate switches.

Each chip contains one FPTA module and was fabricated as
a Tiny Chip through MOSIS, using 0.5-micron CMOS
technology. The test board with four chips mounted on it is
illustrated in Figure 4.

Figure 4 A test board with four FPTA chips

The hardware evaluation board is controlled by National
Instruments data acquisition hardware and software
(LabView) and integrated into the evolutionary design
envionment.

4. AUTOMATIC SYNTHESIS OF A NEW FUNCTION

The following experiment performed in hardware on the
FTPA chip illustrates the evolutionary synthesis of to
computational circuit. The desired functionality is a
nonlinear DC input-output characteristic (a Gaussian
current-voltage characteristic). Four chips were
programmed in parallel with bit-string configurations
corresponding to four individuals of a population of 1000;
after evaluation the chips were reprogrammed with the
chromosome of the next four individuals, and so on until all
1000 in one generation were tested. Evolution led to
“Gaussian” circuit solutions within 20-30 generations. The
current speed of evaluation is 1000 circuits in 8.25 seconds
using the four FPTA chips in parallel; another order of
magnitude speed-up is expected when some existing data
acquisition bottlenecks will be solved.

The following GA parameters were used:
Population: 1000, Chromosome size: 24 bits for 1 FPTA,
and 52 to 88 bits for 2 FPTAs (the number depends on
interconnection schemes), Evaluation samples: 30,
Mutation rate: 4%, Crossover rate: 70%, Tournament
Selection: 20 individuals, Elite Strategy: 9% population

size (88 individuals), Fitness Function: Square Root Mean
Error.

The response of four mutants is illustrated in the screen
capture shown in Figure 5 (LabView display of the signals
captured by the data acquisition boards). Notice the
“mutations” in the genetic code of the solutions obtained by
evolution (vertical chromosomes R24 to R1 reading from
top to bottom, corresponding to switches S24 to S1 in
Figure 1) compared with the human-designed circuit
(rightmost vertical string).

Figure 5 The “Gaussian” response of four “mutants” and

their “genetic code” compared to the code of a human-
designed circuit.

5. A SELF-HEALING EXPERIMENT

The aim of this experiment was to test the reliability of a
circuit design obtained by evolution and the availability of
the electronic circuit using the on-line self-repairing
property of the evolutionary mechanism [14]. Two FPTAs
were cascaded interconnecting them by three external
wires. The connection terminals P2-Drain, P4-Drain and
N6-Source of the first FPTA were connected respectively to
P3-Source, N5-Drain and N7-Drain. The input voltage was
injected to the N6-Gate of the first FPTA and the output
load was connected to the P4-Source of the second FPTA.
Both FPTAs received a current bias at the N7-Drain
terminal.

Evolution started with a randomly initiated population of
coded configurations, which were transformed into
connection patterns; these were downloaded to the chip.
The output of the generated circuits was compared with the
desired DC Gaussian and their difference was transformed
in a fitness function (which should in the ideal case be zero
or very small). During the evolution the fitness function
shows improvements of the search as illustrated in figure
6. The codes for circuits generating best responses (i.e.
closest to target according to some metric) were selected,

and suffered genetic operations, as controlled by the
evolutionary algorithm. After looping for a number of times
(75 generations), a circuit that best satisfied the
requirements was found and left operational to provide the
desired function. The performance of the chip continued to
be monitored using the fitness function.

-30

-25

-20

-15

-10

-5

0

0 25 50 75 100 125 150 175 200 225

Generations

Figure 6 Fitness value monitoring the performance of the
circuit. At generation 134, we inject a fault by removing

one external wire between the two FPTA's.

At any time if the performance decreases below a certain
threshold (e.g. when a fault is injected), the evolution
process restarts the search for a new circuit configuration,
taking into account the previous circuit configurations in
the population. In this experiment, a fault was injected by
disconnecting one of the external connection between the
two FPTAs used by the operational circuit. At that time a
lowering of performance but not a complete failure was
observed. The reason for the graceful degradation is that
the population of circuits obtained by the evolution process
contains mutants insensitive to faults having the same
phenotypic effect as a genetic mutation as shown on figure
7.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

Vin

Figure 7 Target Gaussian response (triangle marker), the
best individual (square marker) and its four mutants

insensitive to faults having the same phenotypic effect as a
genetic mutation.

When the fault was injected the GA restarted with the
population of its last run, which included the solution that

was currently affected by fault and some of its mutants. The
faulty part became just another component to be used: the
evolutionary algorithm did not "know" that the part was
supposed to do something else. While starting with a
random population took about the same time as finding a
solution in the first place (not shown), starting with the last
available population led to recovery in about 1/3 of the time
while the circuit performance recovered to 90% (shown in
figure 8).

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5
Vin

Figure 8 Target Gaussian response (triangle marker), the
best individual (square marker) and its four mutants after

on-line self-repaired by evolution.

The experiments used a Genetic Algorithm (GA) with the
following parameters: population 500, mutation probability:
0.04, cross-over probability: 0.7, elite strategy: 10%, fitness
function: mean square error. The GA obtained the Gaussian
response before 100 generations, in about 14 minutes and
recovered the fault in about 4 minutes.

6. LESSONS LEARNED

Speed-up by evaluations in hardware

Hardware evaluation can produce a speed-up, especially
when one simulates large, complex analog circuits, and the
circuit response is rapid. One aspect that can however be
easily overlooked is the frequency of operation for which a
certain circuit is designed. There are limitations to
increasing the speed of configuration and test in hardware.
For example, the output of the Gaussian circuit on the
FPTA started attenuation when the input ramp signals were
exceeding 1kHz. Thus, no more than 1000 circuits per
second (of desired low frequency response) could be
reliably evaluated. Even though some artifacts of the
particular FPTA design and load choice may be involved, it
appears natural that evaluating the circuits at a different
frequency than that of intended functioning may introduce
errors. Evaluation in parallel is an alternative speed-up
technique, and at least in the experiments with the FPTA
chips no significant differences were noted between the
implementation of the same circuit on different chips

Effect of Evolution for Fault-tolerance and self-healing

Some insensitivity to faults that has the same influence on
the circuit as a genetic mutation tends to arise for free when
using evolution. Tolerance to an arbitrary and large set of
faults can possibly be achieved by testing the individuals
circuit in the presence of possible faults, athough it may be
time-consuming. We observed also that defects that are
permanent have properties that are put to use for on-line
self-repair. It would be interesting to evaluate the
combination of the evolutionary approach and the more
traditional redundancy methods such as explored in the
"embryological" development approach [13]. These initial
experiments while illustrating the power of evolutionary
algorithms to design digital and analog circuit and to
maintain functionality by recovering from faults without
explicit redundancy, only prepare the ground for further
questions. Examples of further questions include addressing
how can the evolutionary mechanism be protected such that
its implementation is not itself subject to faults, or how
should the fitness function be computed/stored.

8. CONCLUSION

This paper demonstrates two features enabled by evolvable
hardware and which may play an important role in
flexibility and survivability of future space hardware. These
features are automatic synthesis of circuits to perform new
functions and self-healing – recovery from faults.

ACKNOWLEDGEMENTS

The research described in this paper was performed at the
Center for integrated Space Microsystems, Jet Propulsion
Laboratory, California Institute of Technology and was
sponsored by the National Aeronautics and Space
Administration.

REFERENCES

[1] J. Koza, F.H. Bennett, D. Andre, and M.A Keane, “Automated
WYWIWYG design of both the topology and component values of
analog electrical circuits using genetic programming”,
Proceedings of Genetic Programming Conference, Stanford, CA ,
pp. 28-31, 1996

[2] J. Lohn, J. and S. Colombano, “Automated Analog Circuit
Synthesis using a linear representation”, M. Sipper, D. Mange
and A. Perez-Uribe (Eds.) Evolvable Systems: From Biology to
Hardware, Springer-Verlag Lecture Notes in Computer Science
Berlin 1998, pp. 125-133

[3] A. Thompson, “An evolved circuit, intrinsic in silicon,
entwined in physics”. In International Conference on Evolvable
Systems. Springer-Verlag Lecture Notes in Computer Science,
1996, pp. 390-405.

[4] E. Sanchez and M. Tomassini (Eds.) Towards Evolvable
Hardware, LNCS 1062, Springer-Verlag, 1996

[5] T. Higuchi, M. Iwata, and W. Liu (Eds.) Evolvable Systems:
From Biology To Hardware, Proc. of the First International
Conference, ICES 96, Tsukuba, Japan, Springer-Verlag Lecture
Notes in Computer Science, 1997.

[6] M. Sipper, D. Mange, A. Perez-Uribe (Eds.) Evolvable
Systems: From Biology To Hardware, Proc. of the Second
International Conference, ICES 98, Lausanne, Switzerland,
Springer-Verlag Lecture Notes in Computer Science, 1998.

[7] J. R. Koza, F. H. Bennett III,, D. Andre and M. A. Keane,
Genetic Programming III – Darwinian Invention and Problem
Solving, Morgan Kaufman, San Francisco, 1999

[8] E. Vitoz, Analog VLSI Processing: Why, Where and How,
Journal of VLSI Processing, Kluwer, 1993

 [9] Stoica, A. On hardware evolvability and levels of granularity.
Proc. of the International Conference “Intelligent Systems and
Semiotics 97: A Learning Perspective, NIST, Gaithersburg, MD,
Sept. 22-25, 1997

 [10] Stoica, A. Klimeck, G. Salazar-Lazaro, C. Keymeulen, D.
and Thakoor, A. Evolutionary design of electronic devices and
circuits, Proc. of the 1999 Congress on Evolutionary
Computation, Washington, DC, July 6-9, 1999

[11] Stoica, A. Toward evolvable hardware chips: experiments
with a programmable transistor array. Proceedings of 7th
International Conference on Microelectronics for Neural, Fuzzy
and Bio-Inspired Systems, Granada, Spain, April 7-9, IEEE Comp
Sci. Press, 1999.

[12] Layzell, P. A New Research tool for Intrinsic Hardware
Evolution , ICES 98. Springer-Verlag Lecture Notes in Computer
Science, 1998

[13] P. Marchal et al. Embryological development on silicon. In
R. Brooks and P. Maes, editors, Artificial Life IV, pages 365-366.
MIT Press, 1994.

[14] White R. and Miles F. Principles of Fault Tolerance. In
Proceedings of Eleventh Annual Applied Power electronic
Conference and Exposition, pages 18-25, Vol.1. IEEE Press,
1996.

[15] Thompson A. In Proceeding of the First Interntional
Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, pages 524-529. IEEE Press, 1995.

[16] Layzell, P. In Proceedings of the First NASA/DoD Worshop
on Evolvable Hardware, pages 85-86. IEEE Computer Society
Press, 1999.

[17] Stoica A., Keymeulen D., Tawel R., Salazar-Lazaro C., Li W.
In Proceedings of the First NASA/DoD Worshop on Evolvable
Hardware, pages 76-84. IEEE Computer Society Press, 1999.

[18] Zebulum, R. et al., “Analog Circuits Evolution in Extrinsic
and Intrinsic Modes” In Proc. of the Second International

Conference, ICES 98, pages 154-165. Springer-Verlag Lecture
Notes in Computer Science, 1998.

Adrian Stoica is a Senior Member of Technical Staff at Jet
Propulsion Laboratory, California
Institute of Technology, Pasadena, CA.His
research interests include learning and
adaptive hardware, evolvable hardware,
sensor fusion processors, robot learning,
and humanoid robots. He has published
more than 50 papers in these areas. He
has a Ph.D. in EE from Victoria
University of Technology, Melbourne,
Australia, and a MSEE from Technical
University of Iasi, Romania.

Didier Keymeulen is a Research
Engineer at the Jet Propulsion
Laboratory of the California
Institute of Technology.. His
interests are in complex dynamical
systems applied to the design of
adaptive embedded systems. He
obtained his MS. and Ph.D. in
Electrical Engineering and
Computer Science from the Artificial Intelligence
Laboratory of the Vrije Universiteit Brussel, Belgium.

Carlos Harold Salazar-Lazaro is a PhD
Student in Mathematics at Caltech,
Pasadena, CA. He received his BS and
MS in Computer Science and
Mathematics from Rensselaer
Polytechnic Institute. During his
internship at JPL he worked on
evolutionary synthesis of electronic
circuits. He developed the evolutionary synthesis software
for the HP-Exemplar supercomputer, and performed
simulated evolutions of analog circuits.

Vu Duong is a Master Student at U.C. Irvine. He got his
BS in Computer Science from UCSD. During his internship
at JPL he programmed the evolutionary hardware test bed
using LabView and integrated measurement instruments.

